A New Sesquiterpene and a New Norsesquiterpene from *Cacalia deltophylla*

Ying WANG, Cheng Shan YUAN, Xiao Long WANG, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new sesquiterpene and a new norsesquiterpene were isolated from the whole plant of *Cacalia deltophylla* (Maxim) Mattf. Their structures were elucidated as deltocacalone (1) and deltonorcacalol (2) by spectroscopic methods including 2D NMR.

Keywords: Cacalia deltophylla, Compositae, cacalone, cacalol.

Several species of genus *Cacalia* are efficacious in invigorating circulation of blood, relieving coughs and phlegm¹. Up to now, no phytochemical investigations of *Cacalia deltophylla* (Maxim) Mattf have been carried out. Here we report the structure elucidation of a new sesquiterpene deltocacalone (1) and a new norsesquiterpene deltonorcacalol (2) from this plant.

Compound **1** was obtained as yellow crystals from acetone, mp: 183-185°C, $[\alpha]_{D}^{20}$ – 5.4 (*c* 0.35, acetone). Its molecular formula was deduced to be C₁₅H₁₂O₃ from the EIMS ([M]⁺ *m/z* 240) together with ¹³C NMR and DEPT spectra (2×CH₃, 1×CH₂, 4×CH and 8×C). The IR spectrum displayed a conjugated carbonyl group (1652 cm⁻¹). The ¹H NMR spectrum showed the presence of a methyl substituted furan ring, a 1,2,3-trisubstituted benzene, a methyl group on benzene ring and a pair of protons (δ 3.50, 3.78) belong to an oxygen-bearing methylene. In its ¹³C NMR spectrum, the signal of methylene (δ 52.0) appeared at relative high field implying a tri-member epoxy ring. The supposed structure was proved by ³*J* cross peaks in HMBC experiment: C-5/H-1, 3, 14, 15; C-7/H-12, 13, 14; C-8/H-12; C-9/H-1. The configuration of the methylene at C-6 could be assigned as β ²⁻⁴ in the biogenetic consideration of cacalone (a common component of *Cacalia*). Thus, compound **1** was established as deltocacalone.

^{*}E-mail: jiazj@lzu.edu.cn

Ying WANG et al.

Compound **2** was obtained as colorless needles from acetone, mp: 150-152 °C, $[\alpha]_{D}^{20}$ +84.6 (*c* 0.39, CHCl₃). The molecular formula C₁₅H₁₈O₃ was deduced from EIMS ([M]⁺ *m*/*z* 246) and NMR spectra (4×CH₃, 1×CH₂, 3×CH and 7×C). The IR spectrum indicated a hydroxyl group (3282 cm⁻¹) and a conjugated carbonyl group (1670 cm⁻¹). The ¹H NMR spectrum showed the presence of a secondary methyl group, a methyl group on benzene ring, an acetyl group, a methoxyl group and a double bond. These groups was combined by the ¹H-¹³C cross peaks (³*J*) in HMBC experiment: C-1/H-3; C-2/H-4; C-3/H-1, 14; C-5/H-1, 3, 13, 14; C-7/H-12, 13, -OH; C-9/H-1, -OH, -OCH₃; C-10/H-2, 4. The configuration of 14-methyl group was assigned as β based on the strong correlation between 13-methyl group and H-4 α in its NOESY experiment. Thus, compound **2** was described as deltonorcacalol.

Table 1 ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and DEPT data of 1-2 (CDCl₃, TMS)

No.	$1 \delta_{\rm H}$	2 δ _H	No.	$1 \delta_{C}$	DEPT	2 δ _C	DEPT
1	8.31 (dd, 7.5, 1.6)	6.76 (dd, 9.8, 3.0)	1	126.4	CH	120.8	CH
2	7.40 (t, 7.5)	6.08 (ddd, 9.8, 6.4, 2.6)	2	128.0	CH	129.1	CH
3 (<i>α</i>)	7.35 (dd, 7.5, 1.6)	2.25 (ddd, 17.2, 2.6, 1.0)	3	137.1	CH	30.8	CH_2
3β	-	2.49 (dddd, 17.2, 7.0, 6.4, 3.0)	4	135.3	С	27.4	CH
4α	-	3.10 (ddq, 1.0, 7.0, 7.0)	5	135.9	С	131.4	С
12	7.50 (brs)	2.59 (s)	6	56.8	С	128.2	С
13	2.16 (brs)	2.30 (s)	7	136.1	С	125.9	С
14	3.50 (d, 5.8)	1.04 (d, 7.0)	8	149.0	С	148.2	С
14	3.78 (d, 5.8)	-	9	172.6	С	141.5	С
15	2.63 (s)	3.80 (s)	10	136.7	С	128.6	С
OH	-	8.67 (brs)	11	119.4	С	205.6	С
			12	146.0	CH	32.6	CH ₃
			13	7.8	CH_3	16.3	CH_3
			14	52.0	CH_2	18.7	CH ₃
			15	19.7	CH ₂	61.4	OCH ₂

Signals assigned on the basis of HMQC and HMBC spectra.

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. 29972017.

References

- Z. W. Xue, Y. Q. Yu, *ZhongGuo ZhongCaoYao MingJian* (in Chinese), People's Health Press, Beijing, 1996, p.754.
- 2. A. Casares, L. A. Maldonado, Tetrahedron Lett., 1976, 29, 2485.
- 3. F. Yuste, E. Diaz, F. Walls, J. Org. Chem., 1976, 41 (26), 4103.
- 4. M. Soriano-Garcia, F. Walls, H. Barrios, R. Sanchez-Obregon, B. Ortiz, E. Diaz, R. A. Toscano, F. Yuste, *Acta Cryst.*, **1988**, *C44* (6), 1092.

Received 16 October, 2002